波動値の変換方法

1. 標準表記 → S表記(基本的な仕組)

+10の右上にある指数10が何段階あるか、その段階数が、S表記の整数部分となる。

その最上段の指数10の右上にある指数が、S表記の小数点以下の数となる。

S +1.0 , S +2.0 のような表記は、 $+10^{10^0}$ = +10 , $+10^{10^{10^0}}$ = $+10^{10}$ などを意味することになるので、用いない。

+10¹⁰ = +10^{10¹} = S + 1.1
+10¹⁰⁰ = +10^{10²} = S + 1.2
......
+10¹⁰⁰
$$\stackrel{\text{\tiny{$(\vec{0}$}}}{=}$$
 = +10<sup>10^{10¹} = S + 2.1
+10¹⁰ $\stackrel{\text{\tiny{$(\vec{0}$}}}{=}$ = +10^{10^{10²} = S + 2.2}</sup>

2. 標準表記の中間値 → S表記(変換例)

a) +730,000,000,000 ^(注) の場合

$$+730,000,000,000 = +10^{2.86} \times 10^{9}$$

= $+10^{11.86} = +10^{10^{1.07}} = S + 1.107 = S + 1.2$

S表記の小数点2桁以下は、四捨五入せず切り上げる。

b) +10^{126 (注)}の場合

$$\log 126 = 10^{2.1}$$
 だから、

$$+10^{126} = +10^{10^{2.1}} = S + 1.21 = S + 1.3$$

(注) 現在では、このような表記はしていない。+10¹⁰ (= S +1.1) を越える場合は、最初から、 S +1.2, S +1.3, … としている。